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* [t is possible to share data and:
—Protect privacy

—Meet regulatory and legal
requirements

—Get high quality data



&

PRIVACYANALYTICS

nnnnnnnnnnnnnnnnnnnnnnn

There are some standards
and more detailed
(operational) standards are
in development for de-
identification
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e There are different levels of data
release, and the de-identification
scheme needs to match that:

—Public
—Quasi-public
—Non-public
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De-identification is a risk management
exercise that takes into account the
context of the data release
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There are many precedents
on what is acceptable risk —
this is not something we
should be debating (there
are bigger issues)



Data Anonymization Solutions

More sophisticated methods
(computational and statistical
methods) are needed to be able
to generate high quality data
and meet the risk thresholds
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There is a real need for multi-
disciplinary education and
certification around de-
identification practices to start
building a community of
practice
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The discourse on re-
identification attacks is of
deep concern from a
scientific, ethical, and
Integrity perspective



Data Anonymization Solutions

Our biggest challenge is
transitioning good
de-identification
methodologies into
practice
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Data Anonymization Solutions

The existing legal
framework is fine as it is
and is quite robust — we
can do a lot within it to

free the data
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A Historic and Important
Societal Debate is underway...
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The Societal Value of De-identified Data

m Properly de-identified health data is an invaluable “public
good”. The broad availability of de-identified data is an essential
tool for society supporting scientific innovation and health system
improvement and efficiency.

m De-identified data does and can serve as the engine driving
forward innumerable essential health systems improvements:
quality improvement, health systems planning, healthcare fraud, waste
and abuse detection, and medical/public health research (e.g.
comparative effectiveness research, adverse drug event monitoring,
patient safety improvements and reducing health disparities).

m De-identified health data greatly benefits our society and provides
strong privacy protections for the individuals. As the promise of
EHRs and Health IT yields richer de-identified clinical data, the
progress of our nation’s healthcare reform will likely be built on a
foundation of such de-identified health data.
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Counting and Tabulating is Essential to
Public Health and Population Science...

—The foundational acts of counting and tallying
individual characteristics underlie our ability
to analyze the population distributions and
determinants of disease—which is essential to
medical and population health science.

—But some risk of re-identification exists with every
characteristic that we collect and report.

—Thus, the important ongoing debate about
health data de-identification and the ethical
and public policy implications for research
conducted with de-identified data.
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« Unfortunately,
de-identification
public policy has
often been driven
by anecdotal and
limited evidence,
privacy folklore,
and targeted re-
identification
demonstration
attacks which fail
to provide
reliable evidence
about real world
re-identification
risks
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Misconceptions about HIPAA De-identified Data:

“It doesn’t work...” “easy, cheap, powerful re-identification”
(Ohm, 2009 “Broken Promises of Privacy”)

*Pre-HIPAA Re-identification Risks {Zip5, Birth date, Gender} able to

identify 87%?, 63%?, 27%? of US Population (Sweeney, 2000, Golle, 2006,
Sweeney, 2013 )

m Reality: HIPAA compliant de-identification provides important
privacy protections

— Safe harbor re-identification risks have been more recently estimated
at 0.04% (4 in 10,000) (Sweeney, NCVHS Testimony, 2007)

— Safe Harbor de-identification provides protections that have been
estimated to be a minimum of 400 to 1000 times more protective of
privacy than permitting direct PHI access.

(Benitez & Malin, JAMIA, 2010)

m Reality: Under HIPAA de-identification requirements, re-
identification is expensive and time-consuming to conduct, requires
serious computer/mathematical skills, is rarely successful, and
uncertain as to whether it has actually succeeded

22



Misconceptions about HIPAA De-identified Data:

“It works perfectly and permanently...”

m Reality:
— Perfect de-identification is not possible

— De-identifying does not free data from all possible
subsequent privacy concerns

— Data is never permanently “de-identified”... (There
is no guarantee that de-identified data will remain
de-identified regardless of what you do to it after it
is de-identified.)

— Simply collapsing your coding categories until the
data is “k-anonymous” can make the data
unsuitable for many statistical analyses

23



Myth of the “Perfect Population Register”

m The critical part of many re-identification efforts that is
often assumed by disclosure scientists is the assumption
of a perfect population register.

m All Population registers will have data errors and be
incomplete to some extent. (e.g. Nationwide voter
registration levels typically are about 70%)

—However, some types of data errors are more critical than
others.

—Persons who are not included in population registers will not
have identifiers which can be linked to identify them.

m Persons who are not in a population register can not re-
identified, but they also indirectly reduce the probability of
correct re-identification for others.

m If only one person within a quasi-identifier set is missing from
the population register, then the probability of correct re-
identification drops to 50%; if two persons are missing, then the
probability of correct re-identification is 33% , and so on.
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Importance of “Data Divergence”

m Errors and inconsistencies in the linking data between the
sample and the population create “data divergence”:

—Time dynamics in the variables (e.g. changing Zip
Codes when individuals move, Change in Martial Status,
Income Levels, etc.),

—Missing and Incomplete data and
—Keystroke or other coding errors in either dataset,

m But even probabilistic record linkage methods, which can
help address such challenges, are subject to uncertainty.
The data intruder is never really certain that the correct
persons have been re-identified.

m The recent Personal Genome Project re-identification
attack using {Zip5, Gender and DoB} was able to achieve
only a 27% re-identification rate (not 87%) due to these
issues.
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. “De-identification leads to
The Inconvenient Truth: ;,¢5rmation loss which may limit
Complete the usefulness of tile resulting
Protection health information” (p. 8, Guidance)
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Balancing Disclosure Risk/Statistical Accuracy

Balancing disclosure risks and statistical accuracy Is
essential because some popular de-identification
methods (e.g. k-anonymity) can unnecessarily, and
often undetectably, degrade the accuracy of de-
identified data for multivariate statistical analyses or
data mining (distorting variance-covariance matrixes,
masking heterogeneous sub-groups which have been
collapsed in generalization protections)

This problem is well-understood by statisticians, but not
as well recognized and integrated within public policy.

Poorly conducted de-identification can lead to “bad
science” and “bad decisions”.

Reference: C. Aggarwal http://www.v1db2005.0rg/program/paper/fri/p901-aggarwal .pdf
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Separating the Signal from the Noise
Which is the true signal here? Q

W
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K-anonymity Can Distort Multivariate Relationships
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and this problem becomes more severe with
with higher multi-dimensional space...
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and... K-anonymity Hides Heterogeneities

Whjte

Other
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K-anonymity Can Distort Multivariate Relationships
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K-anonymity Can Distort Multivariate Relationships
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K-anonymity Can

2 Percent Sample
from Population
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K-anonymity Can Distort Multivariate Relationships
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State Specific Re-identification Risks: Population Uniqueness

CA NY IL OH GA NJ WA IN TN MD MN AL LA OR PR IA AR UT NM NE HI NH MT SD ND DC

(States are ordered

- by Population
Sizes)
1/10= 01 - R Legend:
] DoB (Date of Birth)
] MoB (Mnth&Yr of Birth)
1/100= 0.1 - ! YoB (Year of Birth)
] y Z5 (5-digit Zip Code)
Sweeney Z3 (3-digit Zip Code)
Safe 0.001 Race WBHAO coding:
Harbor =S e BN B B R R - Wh|te, BIaCk, HISpaniC,
Estlrcpc;'aototﬁi 1 A A~ Asian, Other
T f \_\/\ﬂ’\/ v \JT\ T
—4—DoB,Z5
0.00001 - % y Ky ~#—MoB,Z5
V A 7\ A / v —#—Y0B,Z5
0.000001 -
[ y dek L)L X —>4=D0B,Z3
).0000001 - —3=MoB,Z3
=@-Y0B,Z3
1E-08 -
] ====Y0B,Z3,Race
L0 *Gender is included in all Equivalence Classes

Data Source: 2010 U.S. Decennial Census

Graph © DB-J, dEpid/dt Consulting Inc.



Challenge: Subtraction Geography
(i.e., Geographical Differencing)

m Challenge: Data recipients often request reporting
on more than one geography (e.g., both State and
3 digit Zip code).

m Subtraction Geography creates disclosure risk
problems when more than one geography is
reported for the same area and the geographies
overlap.

m Also called geographical differencing, this
problem occurs when the multiple overlapping
geographies are used to reveal smaller areas for
re-identification searches.
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Example: OHIO Core-based Statistical Areas

‘ Pennsylvannia

There are 7 CBSAs in Ohio which
Cross into 4 Border States

iddletown,
i € W-
Kentucky 2
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Tennessee - ZCTA5 Populations

Population
M < 1500

[ 1,501 - 5,000
[]5,001 -10,000
110,001 - 20,000
B 20,001 +




Tennessee - County Populations

Population
M < 1500

[ 1,501 - 5,000
[]5,001 -10,000
110,001 - 20,000
B 20,001 +




Tennessee - ZCTA5 X County Populations

Population
M < 1500

[ 1,501 - 5,000
[]5,001 -10,000
110,001 - 20,000
B 20,001 +




New York
ZCTA5S Populations

Population
M < 1500
91,501 - 5,000
[]5,001 - 10,000
110,001 - 20,000
B 20,001 +




New York
ZCTA3 Populations

Population
M < 1500
91,501 - 5,000
[]5,001 - 10,000
110,001 - 20,000
B 20,001 +




New York

LCTA5 Collapse
Populations

Population
M < 1500
91,501 - 5,000
[]5,001 - 10,000
110,001 - 20,000
B 20,001 +




Challenge: “Geoproxy” Attacks

m Challenge: Data intruders can use Geographic
Information Systems (GIS) to determine the likely
locations of patients from the locations of their
healthcare providers

— Retail Pharmacy Locations
— Physician or Healthcare Provider Locations
— Hospital Locations

m Geoproxy attacks have become much easier to
conduct using newly available tools (e.g., Web
mapping & “Mash-up” technologies) on the
internet.
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So, How Do We Move Beyond Anecdotes
to a Rigorous, Scientific, Evidence-
Based Risk Management Approach for
Dealing with Re-identification Risks?

mQuantitative Policy Analyses have been used for
decades by many government agencies (EPA,
Energy Dept.) to help address challenging policy
decisions regarding difficult risk management
questions where considerable uncertainty exists
for important risk management questions.
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Quantitative Policy Analyses for
De-identification Policy:

mDe-identification policy is the subject of
considerable controversy because it must
balance important risks and benefits to
individuals and societies and both sides of this
question are subject to important uncertainties
and competing values.

mEssential to recognize that complex social,
psychological, economic and political
motivations can underlie whether re-
identification attempts are made.
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Three Main Data Intrusion Scenarios:

m Specific-Target (aka “Nosy Neighbor”) Attacks (Have
specific target individuals in mind: acquaintances or
celebrities)

m Marketing Attacks (Want as many re-identifications as
possible in order to market to these individuals, may
tolerate a high proportion of incorrect re-
identifications, but this can come at the risk of being
caught re-identifying)

m Demonstration Attacks (Want to demonstrate re-
identification is possible to discredit the practice or to
harm the data holder; Doesn’t matter who is re-
identified so unverified re-identifications may also
achieve intended goals)
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Data Intrusion Scenarios:

m Prob(Re-identification) =
Prob(Re-ident | Attempt)*Prob(Attempt)

m Note that Prob(Attempt) & Prob(Reident | Attempt) are
actually not likely to be independent - higher re-
identification probabilities are likely to increase re-
identification attempts.

m Some very useful frameworks exist for characterizing
Data Intrusion Scenarios:

— Elliot & Dale, 1999, Duncan & Elliot Chapter 2, 2011

m We can frame the Prob(Attempt) in terms of:
Motivation, Resources, Data Access, Attack Methods,
Quasi-identifier Properties and Sets, Data Divergence
Issues, and Probability of Success, Consequences and
Alternatives for Goal Achievement
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Quantitative Policy Science

m Conducting systematic quantitative cost-
benefit policy analyses using state-of-the-
art uncertainty and sensitivity analysis
methods (e.g. with Latin-Hypergrid
exploration of uncertain parameters)
allows us to properly deal with the many
important unknowns which could impact
whether re-identification attempts under
various data intrusion scenarios are likely
be economically viable and realistic.



Latin Hypercube Sampling
in Uncertainty Analyses

Parameter A

]

Parameter B

1,000
Equi-probable
slices of
A and B

Sampled
without
Replacement

irst Sample

=

7

Second Sample

Third Sample

Use of
Latin
Hypercube
Sampling:

Assures an
efficient and
thorough
search of
the plausible
parameter
space.



Uncertainty Analyses
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References:

The ‘Re-Identification’ of Governor William Weld's
Medical Information: A Critical Re-Examination of
Health Data Identification Risks and Privacy
Protections, Then and Now

http://papers.ssrn.com/sol3/papers.cfm?abstract id=2076397
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Examining the intersection of law and health care, biotech & bioethics
A blog by the Petrie-Flom Center and friends
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Online Symposium on the Law, Ethics & Science of
Re-identification Demonstrations

o http://blogs.law.harvard.edu/billofhealth/2013/05/29/public-policy-
considerations-for-recent-re-identification-demonstration-attacks-on-
genomic-data-sets-part-1-re-identification-symposium/

 https://blogs.law.harvard.edu/billofhealth/2013/10/01/press-and-
reporting-considerations-for-recent-re-identification-demonstration-
attacks-part-2-re-identification-symposium/

 http://blogs.law.harvard.edu/billofhealth/2013/10/02/ethical-
concerns-conduct-and-public-policy-for-re-identification-and-de-
identification-practice-part-3-re-identification-symposium/
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Measuring Disclosure Risks

List)

Sample | Sample . Population Population
. Potential .
Records \Uniques Uniques Records
- (e.g.,

Voter Registration
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Records that are unique in the sample
but which aren’t unique in the population, would
match with more than one record in the population,
Only records that are unique in  and only have a probability of being identified
the sample and the population are
at clear risk of being identified
with exact linkage

Linkage Risks

Population
Uniques

Population
Records

Sample
Uniques

Records that are not unique in
the sample cannot be unique in

the population and, thus, aren’t Records that are not in the sample

at definitive risk of being also aren’t at risk of being
identified identified
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HOSPITAL DATA SET
{(Found In Data Set)

VOTER DATA SET
(Found in Data Set)

NON-VOTERS
{in Population)

1 Notin
Hospital Data

= Male
f 1/1/1945
02138

Can’t Re-identify (No Match)

Male

80\ 1/2/1945
Z @ 02138

Not in
Voter Data

Male
@ 1/2/1945
02138

Can’t Re-identify (No Match)

» © ®

Male Male
1/3/1945 1/3/1945
02138 02138

: Male
1/3/1945
02138

Can’t Re-identify { > 1 Match)

> Male
1/4/1945
02138

&

i |

Can’t Re-identify { > 1 Match)

¥ @

1/4/1945 1/4/1945
02138

2 Male
1/5/1945
02138
5

Presumed Re-identification
{Has Only 50% Chance of Being
a Correct Match)

b Male
* 1/5/1945
02138

Directly Protected
From Re-identification

= Male
6 w 1/6/1945
02138

Correct Re-identification

02138
= Male
w 1/5/1945

02138

(3

Male
1/6/1945
02138

Re-identification Failure and Success Conditions

Note:

Figure illustrates
only those
limited cases
where only one
or two persons
with shared
"quasi-identifier”
characteristics
exist in either
the healthcare
data set or in the
voter registration
list.
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Myth of the “Perfect Population Register”

Note that in Row 5 on previous slide:

» Every person not within the voter list is
directly protected from re-identification.

» Furthermore, their absence from the
population register also reduces the
probability that others who share their
quasi-identifier set would be correctly re-
identified.

» This is an extremely important limitation on
re-identification when imperfect population
registers are used.



Challenge: Geoproxy Attacks
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Example: Patient location as revealed within data set,
but further narrowed to probable “hotspots” by using

healthcare provider location data




Hospital visits

Challenge:
Geoproxy Attacks
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Challenge: Geoproxy Attacks

(

r 5
60178

hicago

Directional (Standard Deviation Ellipse) distributions
and “Hot Spot” analysis (Z-score color coding zip codes
for Getis-Ord Gi* statistics)
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Challenge: Geoproxy Attacks - o

ZCTA3 | Population

250 68,890

251 80,077 oo

- Virginia

253 121,609

ZCTA3 252 is
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NAHDO Documents

History of NAHDO Efforts in Covering Data

Privacy of Data Management and Release
Polici

» Testimony at NCVHS .

Rudolph, B. Davis, R. Administrative Data
and Disease Surveillance: An Integration

» White Papers and Contract Toolkit. NAHDO-CDC Cooperative

- A t Project, CDCA t
Project Reports it e (PCAssessmen

» Published articles ——_ RudolphB, Shah, G, Love D. Smal

numbers, disclosure risk, security, and

» Technical TOOlS— | nvento ry for reliability issues in web-based data query
systems. J Public Health Management
Screening (Data) Release Retesiohe
» Administrative Data Committee Person-level Data: An Inventory for

Screening Release, NAHDO, 2008.
leading to PHDSC
PHDSC, PRISM--A Privacy Toolkit for

» G u |da nce DOCU ments a nd Public Health Professionals.; Glossary.
TECh N ical Assistance (NY) Guidance Document on Creating and

/ Releasing Hospital and Facility Discharge
- Data Public Use Files, NAHDO, 2012
» Privacy Workgroups ata Public Use Files
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Key Privacy Points From NAHDO )))
Documents

>Define policies for release keeping in mind important societal needs for data
and privacy for the individual patient. The utility of data must be preserved as
well as the privacy of patient data or collection will cease.

>Establish management controls such as: data use agreements, limited access
to files, limited access to data locations, limited data use beyond premises,
encryption, etc.

>Promulgate administrative rules on: data release; exceptions to open record
statutes; IRBs and/or privacy boards; direct and indirect or sensitive data
elements and their release; limits for re-release of data elements by users;
limits on attempt to re-identify patients; penalties for misuse and penalty
enforcement

> Establish statistical processes, define specific tests, or establish rules for
reducing risk of re-identification from release of sensitive data elements, such
as detailed geographic identifiers, service or other dates, rare diagnoses, race
and ethnicity.



Key Privacy Points from NAHDO )))
Documents

>Establish limits for cell sizes in tables or reports; web-query systems,
tables and maps and determine if you must aggregate years of data
or geography to address small cell sizes

>Define a responsible person(s) within your organization for each of
these tasks in job descriptions to assure internal compliance with the
processes

>Provide annual staff training on the processes for maintaining
privacy of the patient




