

Geographic Aggregation Tool (GAT): A method for handling small numbers when calculating disease rates

Abigail Stamm, Center for Environmental Health, NYS Department of Health August 2020

Outline

- Need for subcounty data
- GAT
 - What it does
 - How it works
 - Application examples

Why display subcounty data?

Need: High risk areas

Issues:

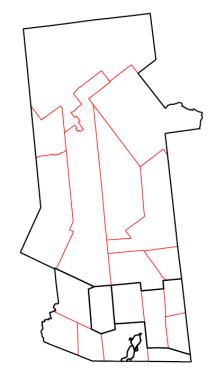
- Smoothing/masking (county)
- Small numbers (tract, town)

Solution: Aggregation

GAT's objective

Aggregate small areas to:

- 1. Meet minimum counts
- 2. Standardize process

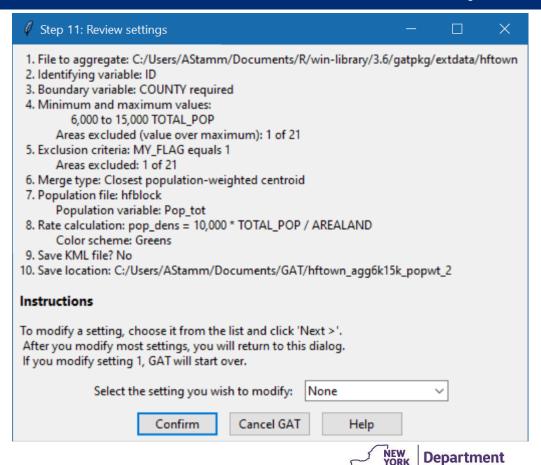

GAT's process

- 1. Request user inputs
- 2. Run aggregation
- 3. Output shapefiles and documentation

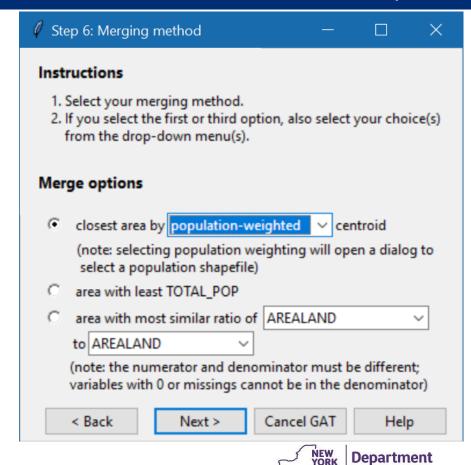
Map comparing original and aggregated areas

Original areas

☐ Aggregated areas

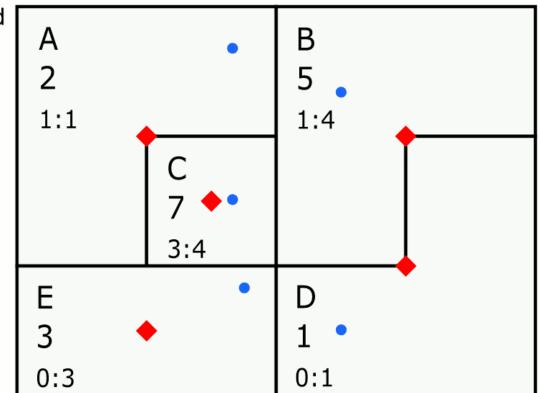


Merge type: closest population-weighted centroid Merged variable: 6,000 to 15,000 TOTAL_POP


User inputs

- Shapefile
- Minimum and maximum values
- Boundaries
- Exclusions
- Aggregation method

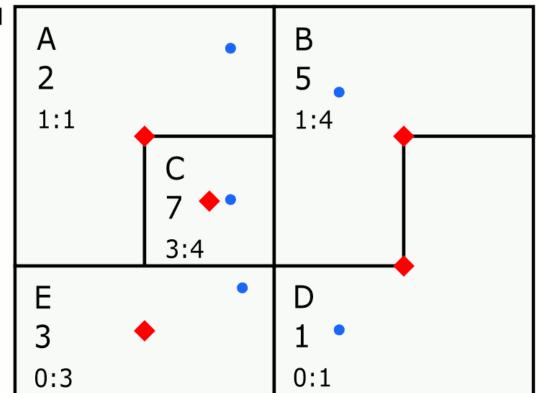
Aggregation methods


- Closest geographic centroid
- 2. Closest population-weighted centroid
- 3. Neighbor with the lowest count
- 4. Most similar neighbor

Closest geographic centroid

Minimum desired value: 5

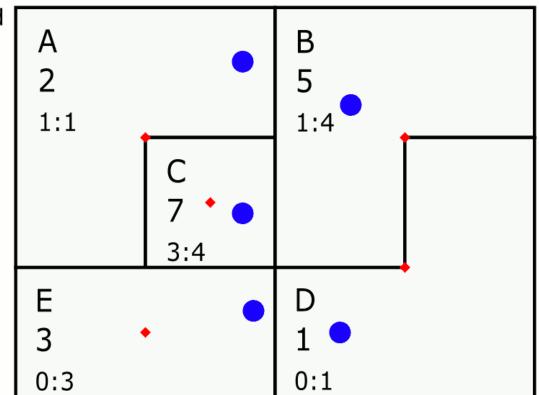
Geographic centroid



Closest geographic centroid

Minimum desired value: 5

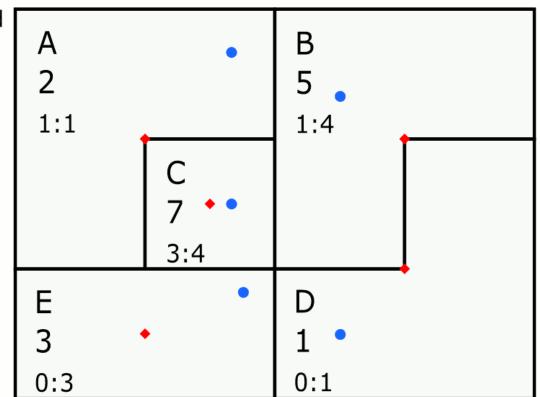
Geographic centroid



Closest population-weighted centroid

Minimum desired value: 5

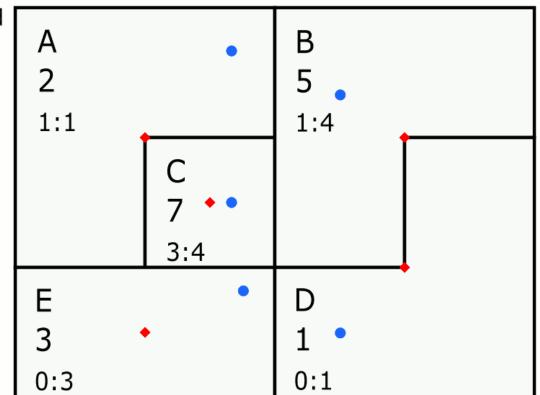
Geographic centroid



Neighbor with the lowest count

Minimum desired value: 5

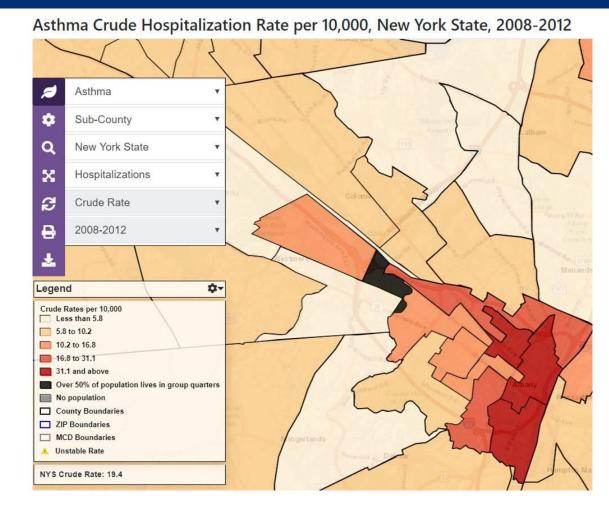
Geographic centroid



Most similar neighbor

Minimum desired value: 5

Geographic centroid



Differences between GAT 2015 and GAT 2020

	GAT 2015	GAT 2020
Format	SAS and R scripts	R package
Log	Minimal	Comprehensive
Maps	Simple, not saved	Detailed, saved to PDF
Change settings dialog	No	Yes
Population weighting	SAS yes, R no	Yes
Exclusion criteria	No	Yes
Maximum values	No	Yes NEW YORK STATE OF OPPORTUNITY. Department of Health

Applying GAT: disease

- aggregation by population
- closest
 population weighted
 centroid

Applying GAT: mortality

- aggregation by number of deaths
- closest geographic centroid



Fig. 6 Thematic Maps of the New York State
Capital District after aggregation. a by life
expectancy (image from Talbot et al. Population
Health Metrics (2018) 16:1)

Performance de Health

Takeaways

How GAT can help you

- Small areas with stable rates
- Standardization and documentation
- Customization

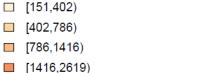
Acknowledgements

CDC for funding
Gwen LaSelva for code and testing
NYS DOH EPHT team for testing and feedback

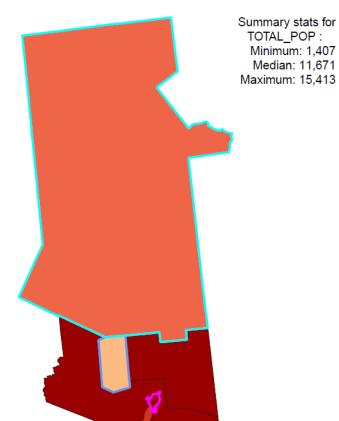
Email me at abigail.stamm@health.ny.gov

Projects that have cited GAT

Sherman RL, Henry KA, Tannenbaum SL, Feaster DJ, Kobetz E, Lee DJ. Prev Chronic Dis 2014;11:130264. DOI: http://dx.doi.org/10.5888/pcd11.130264 (referenced R v1.2)


Werner AK, Strosnider HM. Spatial and Spatio-temporal Epidemiology 2020;33. DOI: https://doi.org/10.1016/j.sste.2020.100339 ((used SAS v1.31)

Werner AK, Strosnider H, Kassinger C, Shin M. *J Public Health Manag Pract*. 2018;24(5):E20-E27. doi:10.1097/PHH.000000000000686 ((used SAS v1.31)


Boscoe FP, Talbot TO, Kulldorff M. *Geospat Health*. 2016;11(1):304. Published 2016 Apr 18. doi:10.4081/gh.2016.304 (used SAS v1.31)

Boothe VL, Fierro LA, Laurent A, Shih M. Global Diaspora News. Published 3/28/2020. https://www.globaldiasporanews.com/a-tool-to-improve-community-health-and-advance-health-equity/ (used R v1.33)

TOTAL_POP After Merging

- **[2619,5981]**
- **■** [2013,30017]
- **[**10317,15413]
- Excluded by user
- Below minimum aggregation value
- Above maximum aggregation value

Example assessment map

NEW YORK
STATE OF OPPORTUNITY.

Department of Health

Aggregation values: 6,000 to 15,000 TOTAL_POP Exclusion criteria: MY_FLAG equals 1

```
NYSDOH Geographic Aggregation Tool (GAT) Log
 Version & date: 1.52 2020-07-14
 Date run: 2020-07-22
 Time GAT took to run: 5.73 minutes
Input file:
                     C:/Users/AStamm/Documents/R/
 Projection:
                     +proj=longlat +datum=NAD27 +
  Field names:
                     TOWN, ID, COUNTY, AREALAND,
 Identifier:
                     ID
  Boundary variable: COUNTY
   You chose to require the aggregation to respect
Output file: C:/Users/AStamm/Documents/GAT/hftown a
 Number of input areas:
                             21
 Number of output areas:
 Number of aggregations:
                             15
 Number of excluded areas:
Merge type: closest population-weighted centroid
 Population file: C:/Users/AStamm/Documents/R/win-
 Population variable: Pop_tot
Exclusion criteria:
 1. MY FLAG equals 1
First aggregation variable: TOTAL_POP
```

Minimum value: 6,000

Example log excerpt

